Arcwise Connected Continua and Whitney Maps

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arcwise Analytic Stratification, Whitney Fibering Conjecture and Zariski Equisingularity

In this paper we show Whitney’s fibering conjecture in the real and complex, local analytic and global algebraic cases. For a given germ of complex or real analytic set, we show the existence of a stratification satisfying a strong (real arc-analytic with respect to all variables and analytic with respect to the parameter space) trivialization property along each stratum. We call such a trivial...

متن کامل

Extending Generalized Whitney Maps

For metrizable continua, there exists the well-known notion of a Whitney map. If X is a nonempty, compact, and metric space, then any Whitney map for any closed subset of 2X can be extended to a Whitney map for 2X [3, 16.10 Theorem]. The main purpose of this paper is to prove some generalizations of this theorem.

متن کامل

A note on a Whitney map for continua

Let X be a non-metric continuum, and C(X) the hyperspace of subcontinua of X. It is known that there is no Whitney map on the hyperspace 2 for non-metrizable Hausdorff compact spaces X. On the other hand, there exist non-metrizable continua which admit and the ones which do not admit a Whitney map for C(X). In this paper we investigate the properties of non-metrizable continua which admit a Whi...

متن کامل

Hereditarily Weakly Confluent Mappings onto S

Results are obtained about the existence and behavior of hereditarily weakly confluent maps of continua onto the unit circle S1. A simple and useful necessary and sufficient condition is given for a map of a continuum, X, onto S1 to be hereditarily weakly confluent (HWC). It is shown that when X is arcwise connected, an HWC map of X onto S1 is monotone with arcwise connected fibers. A number of...

متن کامل

Open Maps between Knaster Continua

We i n vestigate the set of open maps from one Knaster continuum to another. A structure theorem for the semigroup of open induced maps on a Knaster continuum is obtained. Homeomorphisms w h i c h are not induced are constructed, and it is shown that the induced open maps are dense in the space of open maps between two Knaster continua. Results about the structure of the semigroup of open maps ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: gmj

سال: 2005

ISSN: 1572-9176,1072-947X

DOI: 10.1515/gmj.2005.321